964 resultados para Nanotubes, Lithium Storage, Electrochemistry, NiO Nanoparticles, Modification


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Morphology and electrochemical performance of mixed crystallographic phase titania nanotubes for prospective application as anode in rechargeable lithium ion batteries are discussed. Hydrothermally grown nanotubes of titania (TiO2) and carbon-titania (C-TiO2) comprise a mixture of both anatase and TiO2 (B) crystallographic phases. The first cycle capacity (at Current rate = 10 mAg(-1)) for bare TiO2 nanotubes was 355 mAhg(-1) (approximately 1.06 Li), which is higher than both the theoretical capacity (335 mAhg(-1)) and the reported values for pure anatase and TiO2 (B) nanotubes. Higher capacity is attributed to it combination of the presence of mixed crystallographic phases of titania and trivial size effects. The surface area of bare TiO2 nanotubes was very high at 340 m(2) g(-1). C-TiO2 nanotubes showed a slightly lower first-cycle specific capacity of 307 mAhg(-1), but the irreversible capacity loss in the first cycle decreased by half compared to bare TiO2 nanotubes. The C-TiO2 nanotubes also showed a better rate capability, that is, higher capacities compared to bare TiO2 nanotubes in the Current range 0.1-2 Ag-1. Enhanced rate capability in the case of C-TiO2 is attributed to the efficient percolation of electrons as well its to the decrease in the anatase phase.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

h-In2O3/carbon nanocomposites were obtained via a facile ball milling process from a mixture of h-In2O3 nanoparticles and Super P carbon. Compared to pure h-In2O3 nanoparticles, the nanocomposites exhibited an initial discharge capacity of 1360 mAh g-1, a stable reversible capacity of 867 mAh g-1 after 100 cycles as well as a high coulombic efficiency of 99%. The superior lithium-ion battery performance can be attributed to the specific structure of h-In2O3 and the uniform and continuous nano-carbon coating layers. The nano-carbon coating could protect the inner active materials from fragmentation and increase the electronic conductivity. This study not only provides a promising electrode material for high-performance lithium-ion batteries, but also further demonstrates a straightforward, effective and environmental friendly process for synthesizing nanocomposites. © 2014 Elsevier Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Composite of anatase titania (TiO2) nanospheres and carbon grown and self-assembled into micron-sized mesoporous spheres via a solvothermal synthesis route are discussed here in the context of rechargeable lithium-ion battery. The morphology and carbon content and hence the electrochemical performance are observed to be significantly influenced by the synthesis parameters. Synthesis conditions resulting in a mesoporous arrangement of an optimized amount carbon and TiO2 exhibited the best lithium battery performance. The first discharge cycle capacity of carbon-titania mesoporous spheres (solvothermal reaction at 150 degrees C at 6 h, calcination at 500 degrees C under air, BET surface area 80 m(2)g(-1)) was 334 mAhg(-1) (approximately 1 Li) at current rate of 0.066 Ag-1. High storage capacity and good cyclability is attributed to the nanostructuring of TiO2 (mesoporosity) as well as due to formation of a percolation network of carbon around the TiO2 nanoparticles. The micron-sized mesoporous spheres of carbon-titania composite nanoparticles also show good rate cyclability in the range (0.066-6.67) Ag-1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Implications of nanostructuring and conductive carbon interface on lithium insertion/removal capacity and insertion kinetics innanoparticles of anatase polymorph of titania is discussed here.Sol-gel synthesized nanoparticles of titania (particle size similar to 6 nm) were hydrothermally coated ex situ with a thin layer of amorphous carbon (layer thickness: 2-5 nm) and calcined at a temperature much higher than the sol-gel synthesis temperature. The carbon-titania composite particles (resulting size similar to 10 nm) displayed immensely superior cyclability and rate capability (higher current rates similar to 4 g(-1)) compared to unmodified calcined anatase titania. The conductive carbon interface around titania nanocrystal enhances the electronic conductivity and inhibits crystallite growth during electrochemical insertion/removal thus preventing detrimental kinetic effects observed in case of unmodified anatase titania. The carbon coating of the nanoparticles also stabilized the titania crystallographic structure via reduction in the accessibility of lithium ions to the trapping sites. This resulted in a decrease in the irreversible capacity observed in the case of nanoparticles without any carbon coating.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Preparation of novel nanocomposite structure of ZnFe2O4-C is achieved by combining a sol-gel and a low energy ball milling method. The crucial feature of the composite's structure is that sol-gel synthesised ZnFe2O4 nanoparticles are dispersed and attached uniformly along the chains of Super P Li™ carbon black matrix by adopting a low energy ball milling. The composite ZnFe2O4-C electrodes are capable of delivering a very stable reversible capacity of 681 mAh g-1 (96% retention of the calculated theoretical capacity of ∼710 mAh g-1) at 0.1 C after 100 cycles with a remarkable Coulombic efficiency (82%) improvement in the first cycle. The rate capability of the composite is significantly improved and obtained capacity was as high as 702 at 0.1, 648 at 0.5, 582 at 1, 547 at 2 and 469 mAh g-1 at 4 C (2.85 A g-1), respectively. When cell is returned to 0.1 C, the capacity recovery was still ∼98%. Overall, the electrochemical performance (in terms of cycling stability, high rate capability, and capacity retention) is outstanding and much better than those of the related reported works. Therefore, our smart electrode design enables ZnFe2O4-C sample to be a high quality anode material for lithium-ion batteries.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A nanocomposite of Mn3O4 wrapped in graphene sheets (GSs) was successfully synthesized via a facile, effective, energy-saving, and scalable microwave hydrothermal technique. The morphology and microstructures of the fabricated GS–Mn3O4 nanocomposite were characterized using various techniques. The results indicate that the particle size of the Mn3O4 particles in the nanocomposite markedly decreased to nearly 20 nm, significantly smaller than that for the bare Mn3O4. Electrochemical measurements demonstrated a high specific capacity of more than 900 mA h g−1 at 40 mA g−1, and excellent cycling stability with no capacity decay can be observed up to 50 cycles. All of these properties are also interpreted by experimental studies and theoretical calculations.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Developing nano/micro-structures which can effectively upgrade the intriguing properties of electrode materials for energy storage devices is always a key research topic. Ultrathin nanosheets were proved to be one of the potential nanostructures due to their high specific surface area, good active contact areas and porous channels. Herein, we report a unique hierarchical micro-spherical morphology of well-stacked and completely miscible molybdenum disulfide (MoS2) nanosheets and graphene sheets, were successfully synthesized via a simple and industrial scale spray-drying technique to take the advantages of both MoS2 and graphene in terms of their high practical capacity values and high electronic conductivity, respectively. Computational studies were performed to understand the interfacial behaviour of MoS2 and graphene, which proves high stability of the composite with high interfacial binding energy (−2.02 eV) among them. Further, the lithium and sodium storage properties have been tested and reveal excellent cyclic stability over 250 and 500 cycles, respectively, with the highest initial capacity values of 1300 mAh g−1 and 640 mAh g−1 at 0.1 A g−1.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

NiO has been synthesized by microwave-induced chemical synthesis route using metalorganic complex of nickel in a domestic-type microwave oven (2.45 GHz). A novel metalorganic complex of nickel, viz., a beta-ketoester of nickel, synthesized and characterized as apart of this work, was employed as the precursor material. We varied the experimental parameters, such as the choice of solvent and microwave power, to obtain nanoparticles of NiO. The NiO nanoparticles were characterized by XRD, SEM, and TEM. The particle size of the NiO was found to vary from 7-40 nm. The magnetic behavior of the nanoparticles of NiO was examined with a vibrating sample magnetometer, revealing that as the particle size diminishes, the magnetic ordering in NiO changes, leading to a small, measurable coercivity.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we report a synthesis, characterization and electrochemical properties of V2O5 nanobelts. V2O5 nanobelts have been prepared via hydrothermal treatment of commercial V2O5 in acidic (HCl/H2SO4) medium at relatively low temperature (160 degrees C). The hydrothermally derived products have been characterized by powder X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR), Raman spectroscopy, X-ray photo electron spectroscopy (XPS), UV-Vis spectroscopy, Scanning/Transmission electron microscopy (SEM/TEM). XRD pattern of V2O5 nanobelts show an orthorhombic phase. From the FTIR spectrum, the peak observed at 1018 cm-1 is characteristic of the stretching vibration mode of the terminal vanadyl, V = O. The UV-Vis absorption spectrum of V2O5 nanobelts show maximum absorbance at 430 nm, which was blue-shifted compared to that of bulk V2O5. TEM micrographs reveal that the products consist of nanobelts of 40-200 nm in thickness and several tens of micrometers in length. The electrochemical analysis shows an initial discharge capacity of 360 mAh g-1 and its almost stabilized capacity is reached to 250 mAh g-1 after 55 cycles. A probable reaction mechanism for the formation of orthorhombic V2O5 nanobelts is proposed.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The demand for high power density lithium-ion batteries (LIBs) for diverse applications ranging from mobile electronics to electric vehicles have resulted in an upsurge in the development of nanostructured electrode materials worldwide. Graphite has been the anode of choice in commercial LiBs. Due to several detrimental electrochemical and environmental issues, efforts are now on to develop alternative non-carbonaceous anodes which are safe, nontoxic and cost effective and at the same time exhibit high lithium storage capacity and rate capability. Titania (TiO2) and tin (Sn) based systems have gained much attention as alternative anode materials. Nanostructuring of TiO2 and SnO2 have resulted in enhancement of structural stability and electrochemical performances. Additionally, electronic wiring of mesoporous materials using carbon also effectively enhanced electronic conductivity of mesoporous electrode materials. We discuss in this article the beneficial influence of structural spacers and electronic wiring in anatase titania (TiO2) and tin dioxide (SnO2).